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Environment, Human Reproduction,
Menopause, and Andropause
by Alex Vermeulen

As the hypothalamic gonadotropin-releasing hormone (GnRH) pulse generator is an integrator of hormo-
nal, metabolic, and neural signals, it is not surprising that the function of the hypothalamogonadal axis is
subject to the influence of a large array of environmental factors. Before puberty, the central nervous system
(CNS) restrains the GnRH pulse generator. Undernutrition, low socioeconomic status, stress, and emotional
deprivation, all delay puberty. During reproductive life, among peripheral factors that effect the reproductive
system, stress plays an important role. Stress, via the release of corticotropin-releasing factor (CRF),
eventually triggered by interleukin 1, inhibits GnRH release, resulting in hypogonadism. Effects of CRF are
probably mediated by the opioid system. Food restriction and underweight (anorexia nervosa), obesity,
smoking, and alcohol all have negative effects on the GnRH pulse generator and gonadal function. Age and diet
are important determinants of fertility in both men and women. The age-associated decrease in fertility in
women has as a major determinant chromosomal abnormalities of the oocyte, with uterine factors playing a
subsidiary role. Age at menopause, determined by ovarian oocyte depletion, is influenced by occupation, age at
menarche, parity, age at last pregnancy, altitude, smoking, and use of oral contraceptives. Smoking, however,
appears to be the major determinant. Premature menopause is most frequently attributable to mosaicism for
Tlurner Syndrome, mumps ovaritis, and, above all, total hysterectomy, which has a prevalence of about 12-15%
in women 50 years old. Premature ovarian failure with presence of immature follicles is most frequently
caused by autoimmune diseases or is the consequence of irradiation or chemotherapy with alkylating
cytostatics. Plasma estrogens have a physiological role in the prevention of osteoporosis. Obese women have
osteoporosis less frequently than women who are not overweight. Early menopause, suppression of adrenal
function (corticoids), and thyroid hormone treatment all increase the frequency of osteoporosis.
Aging in men is accompanied by decreased Leydig cell and Sertoli cell function, which has a predominantly

primary testicular origin, although changes also occur at the hypothalamopituitary level. Plasma testoster-
one levels, sperm production, and sperm quality decrease, but fertility, although declining, is preserved until
senescence. Stress and disease states accelerate the decline on Leydig cell function. Many occupational
noxious agents have a negative effect on fertility. There is evidence for a decline of sperm quality in the general
male population over the last two decades, probably a consequence of increasing pollution, irradiation, and
population stress. If the evidence is confirmed, it might be mandatory to reduce drastically pollution,
irradiation, and other noxious agents that may impair spermatogenesis.

Introduction
The human organism acquires its full reproductive

capacity after completion of puberty, the fertile period
covering about 35 years in women, whereas in men
reproductive capacity, although decreasing with age, per-
sists until a very old age.

Puberty
Puberty represents the final stage of sexual differentia-

tion during which time the individual acquires full repro-
ductive capacity, with not only maturation of sexual organs
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and formation of the oocytes and mature spermatozoa, but
also development of secondary sex characteristics under
the influence of sex hormones. Puberty is initiated by an
increase in both frequency and amplitude of gonadotropin
pulses, which activate gonadal growth and function. The
increase in gonadotropin pulses is initially associated with
the onset ofnocturnal, non-REM (rapid eye movement) sleep
(1,2). This pulsatile gonadotropin release by the gonado-
trophs reflects the pulsatile release of gonadotropin-
releasing hormone (GnRH) into the hypophyseal portal
circulation by a group of specific neuroendocrine cells in
the medio-basal hypothalamus called the pulse generator.
The trigger of this activation ofthe GnRH pulse generator,
and hence the initiation of puberty remains unknown. It
has been suggested that the initiation of puberty might
involve a decreased sensitivity of the hypothalamic pulse
generator to the inhibitory effects of opiate peptides (3).
The activation of the pulse generator is independent of the
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gonads as it occurs at the same age in agonadal individuals
as in normal adolescents.

Restraint of the onset of puberty resides in the central
nervous system (1). In industrialized countries, the age of
puberty has decreased steadily over the last century in
association with the improved socioeconomic status, and
this suggests that nutritional status has an influence on
the maturation of the pulse generator. Before the central
nervous system (CNS) activates puberty, a certain level of
neural maturity must be reached, and it is known that
bone age is a better reflection ofmaturity than chronologi-
cal age. A critical body mass is also required before the
CNS starts to activate puberty (4). Underweight boys and
girls and adolescents with a poor nutritional status have a
delayed puberty. Chronic stress also causes maintenance
of the prepubertal hypogonadotropic status, thereby
delaying puberty, and such stress may be mental, as in the
emotional deprivation syndrome, or organic, as in chronic
disease.

Adult Reproductive Function
The reproductive function in adults is dependent on the

intermittent discharge of gonadotropins under the influ-
ence of pulsatile GnRH secretion by the GnRH pulse
generator, which functions as an integrator of neural,
hormonal, and metabolic signals and governs gonadal
function by the secretion ofgonadotropins. The hypothala-
mo-pituitary-gonadal system is therefore extremely sensi-
tive not only to hormonal and metabolic influences, but also
to all factors affecting the central nervous system.
Androgens have an inhibitory effect at the hypothalamic
level and estrogens have their inhibitory effect at the
pituitary level, both resulting in reduced gonadotropin
secretion. Anabolic steroids, as used by some athletes and
body builders, and estrogens in food ingested in large
quantities also have similar inhibitory effects.
The endogenous opioid system plays a pivotal role in the

modulation of the GnRH pulse generator. Opioids have a
restraining effect, decreasing both leutinizing hormone
(LH) pulse frequency and amplitude (5,6). Exogenous
opioids such as morphine, methadone, and heroin have a
similar inhibitory effect causing decreased LH pulse fre-
quency and testosterone levels. Drug addicts frequently
have low plasma levels of sex hormones, leading to hypo-
gonadism, amenorrhea, and infertility.
The role of the adrenergic system in the regulation of

the GnRH pulse generator in man has not been completely
elucidated. It appears to stimulate the pulse generator in
nonhuman primates (7), but no convincing effects have
been detected in humans.
Among the peripheral factors affecting the reproductive

system, stress plays an important role, whether mental or
physical. Mild stress (chair restraint) in nonhuman pri-
mates arrests the GnRH pulse generator (8), an effect
mediated by the corticotropin-releasing factor (CRF)
(9,10). CRF infusion in humans causes an inhibition of
pulsatile LH release (11). Fever is a common stressful
situation and is accompanied by an increased release of
CRF, which stimulates adrenal corticotropin hormone

(ACTH) secretion, resulting in increased plasma cortisol
levels, which inhibits pulsatile LH release. Fever-induced
CRF release appears to be triggered by cytokines,
especially interleukin 1, which is an important mediator of
activated macrophage function. Macrophages also release
vasopressin, which contributes to ACTH discharge but
may also play a role in the inhibition of LH secretion. It is
not surprising, therefore, that acute stress causes a rapid
decline in plasma testosterone levels. Any acute infectious
disease induces a decrease in LH and testosterone levels
and is followed by a transient oligospermia.
Whereas the acute effects of stress on the pituitary-

gonadal axis appear to be mediated by CRF itself, in
chronic stress cortisol appears also to play a role in
decreasing plasma LH and testosterone levels. The inhibi-
tory effects of CRF on the GnRH pulse generator appear
to be mediated by the opioid system because they are
neutralized by the anti-opioid Naloxone. Emotional stress,
including endogenous depression, in women may be the
cause of psychologic hypothalamic amenorrhea, which ap-
pears to be secondary to impaired pulsatile GnRH release.
In this condition there are low basal LH levels and de-
creased LH pulsatility, but a normal response to GnRH,
which indicates functional integrity of the adenohypophy-
sis and therefore a hypothalamic origin of the hypogonado-
tropism. There is evidence that increased hypothalamic
,B-endorphin plays an important role in the stress-induced
inhibition of gonadotropin secretion (12). The emotional
stress of extended school examinations may also induce a
decrease in testosterone levels on boys and amenorrhea in
girls (13).

Physical stress such as competitive sports causes a
reduction in the LH pulse frequency, leading to low testos-
terone levels in men and amenorrhea in women (14). Cum-
ming et al. (15) observed that running for exercise caused a
reduction in LH pulse frequency without any change in
pulse amplitude. Elias et al. (16) detected a decline in LH
levels following exercise on the treadmill, reaching a nadir
at 90 min, and this was associated with an increase in CRF
levels, which was proposed to be the mediator of the LH
changes. There does not appear to be any difference in LH
level and LH pulsatility, either under basal conditions or
after Naltrexone administration, after a 10-15 mile run in
men trained for endurance running in comparison to
sedentary controls (17).
The effects of physical trauma are exemplified by the

decline in testosterone levels during surgery (18), which is
proportional both in degree and in duration to the severity
of the surgical procedure. Following major surgery,
depressed testosterone output persists for 3 weeks. The
influence of chronic physical stress, such as industrial
noise or altered daily rhythms caused by night work or
shiftwork, on reproduction should be considered, but there
are no control data available.
Acute or chronic food restriction has an inhibitory effect

on pulsatile GnRH release. Chronic undernutrition may
arrest pubertal development, and it is associated with
gonadal atrophy and infertility in adult men (19) and with
irregular menstrual cycles or amenorrhea in women (20).
Cameron et al. (21) showed that 1 day of fasting in rhesus
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monkeys caused minimal weight loss but significant
decrease in LH and testosterone pulse frequency. In men,
a 48-hr fast caused a significant decrease in mean plasma
LH and testosterone pulse frequency but an unchanged
pulse amplitude (22). Komaki et al. (23) reported a slight
increase in plasma f-endorphin levels during acute fasting
but this was not maintained during prolonged fasting.
A complex interplay of fasting, malnutrition, and neu-

ropsychiatric factors are responsible for the amenorrhea
of patient with anorexia nervosa. Gonadotropin levels are
low and LH pulse frequency is decreased. The responses
to GnRH revert to those seen in prepubertal children.
However, the normal, adult-type responses are restored
by chronic treatment with pulsatile GnRH or weight gain
(24,25).
Exogenous obesity appears to have more subtle effects

on reproductive function. Male obesity is associated with a
decrease in plasma levels of both total and free testoster-
one, the decrease in free testosterone being less important
because of a concomitant decrease in sex-hormone-binding
globulin (SHBG) capacity. Changes in SHBG capacity are
probably caused by a direct effect of hyperinsulinism on
hepatic SHBG synthesis. The mechanism for the decrease
in testosterone levels is not apparent. The LH pulse fre-
quency is normal in obese men; however, there is a reduced
frequency oflarge amplitude pulses, and the amount ofLH
secreted at each pulse is less than in nonobese men.
Female obesity is frequently associated with menstrual

irregularity and amenorrhea. Testosterone levels,
especially free testosterone, are increased, and the bind-
ing capacity of SHBG is reduced, probably as a conse-
quence of increased insulin and IGF-1 levels. A short-term
low caloric diet of 400 kcaVday for 4 weeks will usually
normalize the androgen levels with resumption of ovarian
cyclical activity, although, notwithstanding weight loss,
the obesity itself persists.
The effects of type of diet on the reproductive system

have been examined. We could not detect any difference is
plasma total or free testosterone levels between men on a
normal Western diet and men consuming a macrobiotic
vegetarian diet (26). Key and co-workers (27) observed
that in comparison to omnivores, vegetarians had substan-
tially higher SHBG levels, but total and free testosterone
levels and estradiol (E2) levels were similar. Belanger et al.
(28) found higher SHBG levels in vegetarians, although
testosterone levels were normal. Adlercreutz et al. (29)
reported that women eating a Western diet had high sex
hormone and low SHBG levels, resulting in a high bio-
availability of the hormones compared to vegetarian
women. Similar results were observed by Armstrong et al.
(30) in postmenopausal women. There appears to be a
positive correlation between dietary fiber intake and
SHBG levels so that a high fiber intake would result in low
levels of bioactive sex hormone (29,31,32), although Key et
al. (27) could not confirm this finding (27). Surprisingly
Meikle et al. (33) reported that a fatty meal reduced the
levels of total and free testosterone, whereas Bennett and
Ingram (34), on the contrary, observed an inverse correla-
tion between fat intake and SHBG levels in postmeno-
pausal women.

Caucasian men have higher testosterone and E2 levels
than Japanese men, but it is not certain ifthe differences in
sex hormone levels are due to differences in diet (35).
Similarly, Chinese men and women have much lower
androstanediol glucuronide levels than their Caucasian
counterparts (36), whereas postmenopausal American
women have significantly higher estrogen levels than Jap-
anese women (37). It is not clearwhether dietary or genetic
factors are responsible for these differences. The racial
variability in sex hormone levels may be important for
explaining the differences in prevalence of different types
of carcinoma, or may be the reason for the different effects
produced by hormonal male contraception.
Male smokers have higher levels of total and free testos-

terone than nonsmokers (26). Some reports (38,39) indi-
cate that smoking does not have a significant effect on
spermatogenesis or sperm quality. However, Spira et al.
(40), studying the sperm characteristics of 409 men being
investigated for infertility and 311 men requesting vasec-
tomy, observed that sperm density, motility, and morphol-
ogy were lower among fertile smokers than fertile
nonsmokers, and the semen of infertile smokers contained
lower numbers of spermatozoa with normal morphology.
The alterations of sperm characteristics were unrelated to
the quantity of tobacco smoked or inhaled.
Smoking has been reported to be accompanied by

slightly increased E2 and progesterone levels during the
follicular phase of premenopausal women and in
postmenopausal women, and this was attributed to stim-
ulation of the adrenal cortex (41). Estradiol metabolism in
smokers is shifted toward the inactive 2-hydroxylated
catechol metabolites instead of toward 16-hydroxylated
metabolites (42). The newborn babies ofwomen who smoke
heavily have a significantly lower weight than those of
nonsmokers.
Acute alcohol intoxication following 1.5 g alcohoVkg body

weight decreases plasma testosterone levels in men by
about 25% between 10-16 hr after the start of drinking,
although SHBG levels are unchanged, and LH pulsatility
and biological activity are unaffected. This suggests a
direct effect on the testis (43,44), but the absence of
enhanced LH secretion in response to low testosterone
suggests an inappropriate pituitary response in addition
(45).

Chronic alcoholics have reduced plasma testosterone
levels but usually still within the normal range (46,48), and
the reduction is directly correlated with the severity and
duration of the alcoholism and the eventual hepatic injury
(47). Testicular atrophy often accompanies alcoholic liver
cirrhosis (49). A multicenter World Health Organization
study of infertile couples that examined sperm charac-
teristics found that men with excessive alcohol consump-
tion had a higher prevalence of azoospermia (9.6% versus
7.2%) and seminal abnormalities (52% versus 36%), but the
differences were not significant (50). Similar results were
found by Spira et al. (40).

Infections may have a direct effect on fertility, includ-
ing mumps, which causes orchitis and oophoritis in a
large proportion of cases when occurring after puberty,
and this may produce infertility as a consequence. The
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human immunodeficiency virus (HIV) may also cause
infertility.

Age and Fertility
Age appears to affect fecundity in both men and women.

It has recently been shown that women whose husbands
had azoospermia and who had received artificial insemina-
tion with donor semen (AID) had a significant decline in
fecundity after the age of 35 years (51-53). The rate of
spontaneous abortion also increases with maternal age
(53), probably due to an increased frequency of chromoso-
mal abnormalities (54,55). The percentage of fetuses with
chromosomal anomalies is double in women over 40 in
comparison to women under 20. Prolonged follicular phase
or delayed fertilization in relation to reduced coital fre-
quency in older couples may play a role in the reduction of
fecundity (56,57). It therefore appears that the decline in
fertility with age may be due mainly to a diminishing
number of oocytes that are capable of forming normal
embryos (58).

Uterine factors may also have an effect on the declining
fertility with age. However, the age-associated increase in
trisomy is detected earlier than the age-associated effects
on uterine function, and it can therefore be concluded that
the effects of aging on the quality of the ova appear at a
younger age than the effects of age on uterine function.
Decreasing fertility with age is also associated with an
increased frequency of endometriosis, fibroids, or tubal
pathology as a result of pelvic infections.
Male fertility has an almost linear decline after the age

of 40, according to Anderson et al. (59). However, Mineau
and Thussel (60) claim a decline in fertility from the age of
25. The increasing prevalence of epididymitis, ductal
obstruction, and chronic prostatitis may contribute to the
decline in male fertility with age.

Factors Altering the Age of Menopause
Menopause signifies the irreversible end ofreproductive

life in women and is a consequence of the progressive
depletion of ovarian follicles. The primary origin of the
menopause in the ovary in women is in clear distinction to
the situation in some laboratory animals such as the rat in
which the cessation of estrous cycles has a hypothalamic
origin. Transplantation of ovaries from old rats into young
rats may result in a resurrection of cyclical activity.
The premenopausal period has a variable duration of 1-

10 years and is characterized by a progressive lengthening
of the menstrual cycle in contrast to the tendency of
progressive shortening with age prior to this period. The
progressive depletion of follicles makes the ovary rela-
tively resistant to gonadotropins, which is reflected in the
relatively high follicle-stimulating hormone (FSH) levels in
the presence of relatively low E2 levels. There is frequent
anovulator,v dysfunctional uterine bleeding. Estradiol lev-
els only occasionally and at irregular intervals reach the
threshold capable of inducing an ovulatory LH peak, and
this is followed by a luteal phase, which is often short or
inadequate. At birth, about 3,000,000 oocytes are present,

but this falls to just over 300,000 at puberty and very few
are present at the menopause.
Menopause in Western countries generally occurs

between the ages of46 and 58 (mean: 51.5 years), and there
is a small secular trend toward an older age at menopause.
Environmental factors that may affect the age at meno-
pause have been examined in a few studies. Van Keep et al.
(61) suggest that a) housewives and agricultural workers
have their menopause approximately 1 year later than
manual workers or other occupational categories. b) Single
women have an earlier menopause than married women. c)
Smoking advances the age of menopause by a mean of 1.5
years, confirming previous data (62-64). d) Parity and age
at last pregnancy is positively correlated with a later
menopause. e) Weight adjusted for height (body mass
index) does not influence the age at menopause, although
other authors have reported a later menopause in obese
women (65) or menstrual irregularities occurring 4-5
years earlier in the premenstrual period in obese women.J)
Undernutrition may induce an early menopause. Data
from sub-Saharan Africa or the Punjab suggest a mean
age at menopause in the early 40s, but other authors (67)
cast doubt on the effect of nutritional status on the rate at
which the ovary is depleted of oocytes. However, nutri-
tional status may determine when the last menstrual
period occurs (nutritional amenorrhea and premature
ovarian failure). g) Early menarche appears to be associ-
ated with late menopause and vice versa. h) Altitude-
associated hypoxia may cause early menopause as indi-
cated by data from the altiplano of Peru, where the age of
menopause is advanced by just over 3 years (68).

Recently, the role of some of these factors as codetermi-
nants of age at menopause was challenged by Brambilla
and McKinlay (66) who concluded from multivariate analy-
ses that married status, parity, weight, education, income,
and use of oral contraception did not influence the age at
menopause, and the only relevant factor was smoking,
which was associated with a significantly earlier meno-
pause. It should be stressed that the influence of all of the
above factors is limited, and each one produces at the most
a difference of 1-2 years in mean age at menopause.

Subjects with mosaic forms of Turner's syndrome or
women with short-arm deletion of one X-chromosome may
be fertile, but usually have a premature menopause.
Mumps oophoritis may also cause premature menopause
(69). However, the most frequent cause of premature
menopause is total hysterectomy and oophorectomy. In
Western Europe, 10-15% of women aged 50 have under-
gone a hysterectomy (70), whereas in Pittsburgh, Pennsyl-
vania, 24% whites and 47% of blacks aged 40-50 have had
this operation (71). Unfortunately, no data are available on
the frequency of concomitant oophorectomy.
Premature menopause implies depletion of ovarian folli-

cles as a consequence of accelerated atresia or decreased
germ cell number and is therefore irreversible. On the
other hand, premature ovarian failure in its strictest sense
is characterized by a resistant ovary with the continued
presence of immature follicles in association with elevated
peripheral gonadotropin levels. This may be an idiopathic
disorder of unknown etiology or may be associated with
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autoimmune disorders, among which the most frequent
are thyroiditis and autoimmune Addison's disease. Cir-
culating antibodies to ovarian tissue are frequently
detected, and antibodies to FSH receptors may also be
found occasionally. Autoimmune premature ovarian
failure may also be part of a polyglandular failure includ-
ing hypoparathyroidism, hypoadrenocorticalism, and
mucocutaneous conditions.

Irradiation and chemotherapy, especially with alkylat-
ing agents, frequently cause premature ovarian failure.
Autoimmune, postirradiation, and postchemotherapy
ovarian failure all may be reversible, thus proving that the
ovarywas not completely depleted offollicles. These condi-
tions, therefore, must be differentiated from true meno-
pause.
The age at menopause may be related to longevity. In an

epidemiological study, 5287 white Adventists aged 55-100
years who had reached menopause naturally were investi-
gated (72), and the age-adjusted death rate over a 6-year
period calculated. The ratio of the death rate for women
who reached a natural menopause before the age of 40
compared to the death rate for women reporting a natural
menopause at age 50-54 years was 1.95 (95% confidence
limits 1.24-3.07).

The Postmenopausal Era
The postmenopausal years are characterized by

extremely low levels of estrogens. In the first 3 years after
the menopause the ovary still contributes to the estrogen
levels which are, however, lower than in the early follicular
phase before the menopause. In later menopause, more
than 4 years after cessation of menses, the estrogens are
synthesized almost exclusively in peripheral tissue,
especially fat and muscle, from androgens secreted by the
adrenals (73). A rare exception is thecal hyperplasia in
which the ovary produces an excess of estrogen. Adrenal
androgen secretion decreases progressively with age, the
levels of dehydroepiandrosterone at the age of 75 years
being only one-fifth the levels at 20 years.
The estrogens produced by peripheral conversion of

androgens, although present at a low level, do have a physi-
ological role in that they reduce pathological postmeno-
pausal osteoporosis.

Cigarette smokers have significantly higher levels of
androstenedione than nonsmokers (42), also during early
menopause (75). Smoking causes a shift of estrogen
metabolism toward inactive metabolites and a consequent
reduction in estrogen levels which increases the risk of
osteoporosis and pathological fractures (76). Estrone and
estradiol levels tend to decline with increasing alcohol
consumption.

Physically active women have lower estrogen levels than
physically inactive women, but surprisingly there is a
positive correlation between muscle strength and
estrogen level (74). Obese women have higher estrogen
levels as a result of increased conversion of androgens into
estrogens in fat tissue and consequently have a lower
frequency of osteoporosis. Osteoporosis is much more
frequent in thinner women and in women receiving

glucocorticoids, which not only have a catabolic effect but
also depress the secretion of adrenal precursors of
estrogens. Chronic stress and depressive states in
postmenopausal women are accompanied by low andro-
stenedione and estrogen levels and excretion (77).

Andropause
Middle age in males, in contrast to females, is not

characterized by a sudden discontinuity in fertility
although fertility declines progressively from the age of
25-40 onwards (53,59,60). It is now generally accepted
that Leydig cell function declines in elderly men. Almost
all authors report a significant age-associated decrease in
free testosterone levels, although in exceptional cases
healthy elderly men maintain unchanged levels of total
testosterone. Primary testicular factors undoubtedly play
a major role in the age-dependent decline in plasma testos-
terone levels and this is associated with a decreased
number of Leydig cells (78), impaired testicular perfusion
(79), impaired steroid synthesis (80), and decreased testos-
terone output in response to hCG stimulation (81,82). A
similar diminished response to increased biologically
active LH levels occur after clomiphene administration
(83). The moderate but significant increase of LH levels
with age is consistent with primary testicular deficiency in
the elderly.

In addition to primary testicular failure in elderly men,
there are also alterations of the hypothalamo-pituitary
pole of the hypothalamo-gonadal axis as evidenced by a)
failure to maintain normal free testosterone levels in spite
of adequate secretory reserve of both gonadotrophs and
Leydig cells, b) disappearance of nychthemeral variations
in testosterone levels (84), c) decreased frequency of large
amplitude LH pulses (85), d) decreased or absent response
ofLH levels to antiopioids or anti-estrogens (86,87), and e)
increased sensitivity of the gonadotrophs to sex hormone
feedback (85,88).
The aging process has less of an influence on sper-

matogenesis. Alterations in sperm quality in old age are
minimal and characterized essentially by a decrease in
motility and number of spermatozoa with normal morphol-
ogy (72,73). However, there is a significant decrease in
daily sperm production in elderly men (90). Plasma FSH
levels increase with age, probably in relation to a de-
creased inhibin secretion, which is a consequence of the
age-associated impairment of Sertoli cell function in addi-
tion to the decrease in the number of Sertoli cells in men
50-80 years old (91). Although there is clear evidence for a
decrease in fertility in elderly men (59,60,92) the zona-free
hamster egg fertilizing ability of spermatozoa from
healthy elderly men appears to be similar to that ofyoung
men (89,92).

Leydig cell function is more resistant to environmental
factors than Sertoli cells, and there is no clinical hallmark
of Sertoli cell function in elderly men, who are generally no
longer interested in fertility. It is not surprising, therefore,
that few data are available on factors that accelerate the
decline in testicular function with age. However, this
decline is dramatically accelerated by acute or chronic
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disease as a consequence oftransient hypogonadotropism,
although direct effects at the testicular level may also play
a role (93). Plasma testosterone levels decrease much more
rapidly with age in subjects who have even a minor chronic
affliction than in perfectly healthy men.

Depression is associated with a decrease in both LH
and testosterone levels, probably mediated by CRF, the
levels of which are increased in many cases. Systemic
diseases such as granulomatous leprosy may damage the
testes directly, whereas hemosiderosis has an indirect
effect, acting by way of impairment of hypothalamo-
pituitary function. Other diseases may alter hormone
release or metabolism at multiple sites in the hypothalmo-
pituitary gonadal axis as occurs in renal failure, which is
associated with increased prolactin levels, decreased pitui-
tary response to GnRH, and decreased testicular
response to hCG. In chronic pulmonary flbrosis, there is
significant correlation between plasma testosterone levels
and arterial oxygen tension (PaO2). Testosterone levels
become subnormal when PaO2 drops below 55 mm Hg
because hypoxia suppresses the hypothalamo-pituitary
axis (94). Uncorrected varicocele causes a more rapid
decline in Leydig and Sertoli cell function with age in
comparison to normal controls (96).
There is clear evidence that aging is associated with a

decreased ability to maintain homeostatic functions and
associated with a decreased responsiveness to stress. It
must be asked, therefore, if chronic stress accelerates the
neurodegenerative aspects of aging. Considerable experi-
mental evidence in animals suggests that chronic stress
accelerates hippocampal neuronal death due to excessive
exposure to glucocorticoid (95). However, only very little
information is available in men, and this is hardly surpris-
ing considering the absence of a universally accepted
deflnition of stress. Several papers have suggested that
there has been a decline in sperm quality and fertility in
the general population over the last few decades, which
may be due to the combined effects of increasing popula-
tion, exposure to radiation, and population stress (91,97-
101).

Toxic Effects of Drugs or Chemicals on
Gonadal Function

There is a large list ofvarious substances that have been
reported to have an adverse effect on gonadal function,
and it will not be possible to discuss each one at length.
Only some of the most important substances will be men-
tioned, and drugs affecting potency, such as anti-
dopaminergics, will not be discussed.

Centrally Acting Drugs. The effects of morphine and
its analogues on the pulse generator have already been
discussed. All heroin addicts, and 45% of methadone
addicts, have decreased spermatozoa motility, and 25%
also have teratospermia (102).
Some cocaine abusers have higher than normal prolactin

levels, but no significant differences in either LH or testos-
terone pulse frequency (103). Cannabinoids are reported to
depress Leydig cell function (104).

Heavy Metals. Lead intoxication sufficient to cause
clinical poisoning (blood lead levels of 66-139 Rg/dL)
appears to induce oligo- and azoospermia in a substantial
proportion of exposed individuals (105). Cadmium is
known to damage testicular blood vessels, causing isch-
emia and tubular necrosis. Chronic exposure to thallium is
less toxic because it is taken up by metallothionein, which
is formed in the testis (106).
Nitrogen, Sulfur, or Phosphorus-Containing Com-

pounds. Nitrofurans inhibit spermatogenesis (107).
Chronic exposure to carbon disulfide, used in the viscose
industry, causes an increase in gonadotropin levels among
workers exposed for an average of 15 years to an atmo-
spheric level of 120-240 mg/m3 (108). Organophosphates
(parathione) cause infertility in farm animals, inhibit tes-
tosterone metabolism in rodents, but have no apparent
effects on Leydig cell function in man (109).
Hormones. Aminoglutethimide, spironolactone, ket-

oconazol, metyrapone, ortho-para-DDD, and cimetidine
all have a direct effect on sex hormone activity.

Anabolic steroids, abused by body builders, block pitui-
tary gonadotropin release leading to a hypogonadotropic
state and low intratesticular androgen concentrations. It
is not surprising, therefore, that oligozoospermia is a
frequent finding in body builders abusing anabolic
steroids. However, this inhibition of spermatogenesis is
reversible even after prolonged use of very large doses
(110).

Progestational drugs such as megestrolacetate, me-
droxyprogesterone acetate, and cyproterone acetate block
gonadotropin secretion and therefore block Leydig cell
function and spermatogenesis. They also have some anti-
androgenic activity.
Pure antiandrogens such as flutamide or anandron

activate the secretion of gonadotropin and sex hormones.
The effects at the cellular levels of sex hormones are
blocked by the competitive binding of antiandrogens to the
androgen receptors.

Anti-estrogens such as chlomiphene or tamoxifen also
activate gonadotropin secretion and may be used to induce
ovulation or induce spermatogenesis. Oral contraceptives
prevent conception by blocking ovulation and/or by caus-
ing changes in cervical mucus characteristics that retard
sperm penetration and by hindering implantation of the
zygote.

Pesticides. Several reports have mentioned infertility
associated with oligo- and azoospermia amongst workers
exposed to kepone pesticides such as dibromochloropro-
pane (DBCP) (111). DBCP (a nematocide) and 2,3-dibromo-
propanol induce oligo- or even azoospermia in factory
employees (112), which appears to be partially reversible
when exposure ceases if FSH levels have remained nor-
mal. Polychlorinated biphenyls (PCB), polychlorinated
dibenzdioxins (PCDD), and dibenzfurans (DBF) have sim-
ilar effects.
Cytostatics and Antimetabolites. ALKYLATING

AGENTS. Chlorambucil (Leukeran), Melphalan (Alkeran),
cyclophosphamide, Ifosfamide and nitrosourea derivates
(BCNU, CCNU), and imidazo carboxamides (dacarbazine)
are known to induce germinal aplasia in men, whereas
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Leydig cell function is generally preserved or only slightly
impaired. The onset of the testicular toxic effect is dose
dependent, and a partial recovery of spermatogenesis may
be expected on cessation of therapy with even the pos-
sibility of paternity. These alkylating agents in women
have a toxic effect on the primary follicles and oocytes and
induce amenorrhea. The age at treatment is an important
determinant: younger women resume ovulatory activity
more frequently than women over 40 years of age. As a
rule, ovaries are more resistant to chemotherapy-induced
damage than testes. Treatment with alkylating drugs
before puberty or in adolescence does not affect fertility in
women, whereas only a small proportion of men who
survive appear to retain fertility. Nevertheless, the testes
of prepubertal boys are relatively more resistant to
alkylating agents than adult testes.
ANTIMETABOLITES. The antimetabolites such as folic

acid antagonists (methotrexate), purine analogues (mer-
captopurine, azothioprine) and pyrimidine analogues (flu-
orouracil, cytarabine) cause less severe effects on
spermatogenesis, and only when used at higher doses.
CYTOsTATIc ACTIVE ANTIBIOTIcs. Actinomycin, daun-

orubicin, doxorubicin, epirubicin, bleomycin vinca
alkaloids (vincristine, vinblastine) and etoposide have less
toxic effects on the gonads. Combination chemotherapy
using cytostatic regimes that include alkylating agents or
procarbazine frequently produce irreversible azoosper-
mia, whereas combinations not containing these drugs
produce germ cell aplasia less frequently and the depres-
sive effects are generally transient (113). Attempts to
prevent the toxic effects on the testis by using GnRH
analogues in order to inhibit spermatogenesis have proved
ineffective.

RADIATION. The effects ofradiation on spermatogenesis
(transient or permanent azoospermia) depend on the total
dose received and on whether the dose is fractionated (114).
The ovary is less sensitive to irradiation than the testis.
The younger the woman, the less the chance ofpermanent
sterility. This age difference is related to the number of
oocytes remaining in the ovary. Children of parents
exposed to either radiation or chemotherapy do not appear
to have an increased incidence of chromosomal abnor-
malities or congenital anomalies.

Conclusion
The hypothalamo-pituitary-gonadal axis is regulated by

a complex interplay of neural, hormonal, and metabolic
signals, and not surprisingly, therefore, may be affected by
many environmental factors. Stress of any form, acute or
chronic disease, nutrition, obesity, alcohol, smoking, and
drugs of addiction all affect reproductive function, More-
over, a large number of pharmaceutical agents, alkylating
agents, industrial toxins, and pesticides, in addition to
irradiation, induce infertility, which is not infrequently
irreversible.

Fertility decreases significantly with age in both men
and women, and chromosomal abnormalities play an
important part in this decline. Age at menopause is largely
determined by genetic factors, and environmental factors

play a minor role. Premature ovarian failure with per-
sistent immature follicles is a secondary phenomenon gen-
erally related to autoimmune diseases.
Of great concern is the suggestive evidence of decline in

sperm quality over the last decades. If this is confirmed,
preservation of the human race may necessitate strict
measures to reduce pollution drastically and to control
irradiation and other noxious agents which impair sper-
matogenesis.
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